Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available January 31, 2026
- 
            This study explores the effect of heat treatment on the microstructural characteristics and corrosion resistance of 316L stainless steels (SSs) produced via laser powder bed fusion (L-PBF), focusing on anisotropic corrosion behavior—a relatively less explored phenomenon in LPBF 316L SSs. By systematically analyzing the effects of varying heat treatment temperatures (500 °C, 750 °C, and 1000 °C), this work uncovers critical correlations between microstructural evolution and corrosion properties. The findings include the identification of anisotropic corrosion resistance between horizontal (XY) and vertical (XZ) planes, with the vertical plane demonstrating higher pitting and repassivation potentials but greater post-repassivation current densities. Furthermore, this study highlights reductions in grain size, dislocation density, and melt pool boundaries with increasing heat treatment temperatures, which collectively diminishes corrosion resistance. These insights advance the understanding of processing–structure–property relationships in additively manufactured metals, providing practical guidelines for optimizing thermal post-processing to enhance material performance in corrosive environments.more » « lessFree, publicly-accessible full text available January 4, 2026
- 
            The resummation calculation (esos) is a widely used tool for the simulation of single vector boson production at colliders. In this work, we develop a significant improvement over the esos code by increasing the accuracy from to and release the esos v2.0 code. Furthermore, we propose a new nonperturbative function that includes information about the rapidity of the system (IFY). The IFY functional form was fitted to data from fixed target experiments, the Tevatron, and the LHC. We find that the nonperturbative function has mild rapidity dependence based on the results of the fit. Published by the American Physical Society2024more » « less
- 
            We present LeJit, a template-based framework for testing Java just-in-time (JIT) compilers. Like recent template-based frameworks, LeJit executes a template---a program with holes to be filled---to generate concrete programs given as inputs to Java JIT compilers. LeJit automatically generates template programs from existing Java code by converting expressions to holes, as well as generating necessary glue code (i.e., code that generates instances of non-primitive types) to make generated templates executable. We have successfully used LeJit to test a range of popular Java JIT compilers, revealing five bugs in HotSpot, nine bugs in OpenJ9, and one bug in GraalVM. All of these bugs have been confirmed by Oracle and IBM developers, and 11 of these bugs were previously unknown, including two CVEs (Common Vulnerabilities and Exposures). Our comparison with several existing approaches shows that LeJit is complementary to them and is a powerful technique for ensuring Java JIT compiler correctness.more » « less
- 
            Abstract A recent study using the first 21 months of the OSNAP time series revealed that the export of dense waters in the eastern subpolar North Atlantic―as part of the Atlantic Meridional Overturning Circulation (MOC)―can be almost wholly attributed to surface‐forced water mass transformation (SFWMT) in the Irminger and Iceland basins, thus suggesting a minor role for other means of transformation, such as diapycnal mixing. To understand whether this result is valid over a period that exceeds the current observational record, we use four different ocean reanalysis products to investigate the relationship between surface buoyancy forcing and dense water production in this region. We also reexplore this relationship with the now available 6‐year OSNAP time series. Our analysis finds that although surface transformation in the eastern subpolar gyre dominates the production of deep waters, mixing processes downstream of the Greenland Scotland Ridge are also responsible for the production of waters carried within the AMOC's lower limb both in the observations and reanalyses. Further analysis of the reanalyses shows that SFWMT partly explains MOC interannual variability, the remaining portion can be attributed to basin storage and mixing. Compared to the observations, the reanalyses exhibit stronger MOC variance but comparable SFWMT variance on interannual timescales.more » « less
- 
            The 70/30 copper–nickel alloy is used mainly in critical parts with more demanding conditions in marine settings. There is a need for innovative methods that offer fast production and cost-effectiveness in order to supplement current copper–nickel alloy manufacturing processes. In this study, we employ wire arc additive manufacturing (WAAM) to fabricate the 70/30 copper–nickel alloy. The as-built microstructure is characterized by columnar grains with prominent dendrites and chemical segregation in the inter-dendritic area. The aspect ratio of the columnar grain increases with increasing travel speed (TS) at the same wire feed speed (WFS). This is in contrast with the equiaxed grain structure, with a more random orientation, of the conventional sample. The sample built with a WFS of 8 m/min, TS of 1000 mm/min, and a track distance of 3.85 mm exhibits superior corrosion properties in the 3.5 wt% NaCl solution when compared with the conventional sample, as evidenced by a higher film resistance and breakdown potential, along with a lower passive current density of the WAAM sample. The corrosion morphology reveals the critical roles played by the nickel element that is unevenly distributed between the dendrite core and inter-dendritic area.more » « less
- 
            Abstract Wire-arc directed energy deposition (DED) processed Inconel (IN) 718 is known to have coarse columnar grains, strong texture, and significant chemical and microstructural inhomogeneity in the as-fabricated condition. Homogenization treatment is commonly used prior to aging to eliminate the inhomogeneity and detrimental precipitation for better mechanical properties. In this study, however, direct aging (DA) at 700 °C without homogenization has resulted in room-temperature yield strength, ultimate tensile strength (UTS), and elongation that are comparable to wrought condition and among the highest reported properties for wire-arc DED IN718. The DA samples at between 650 and 750 °C aging also demonstrates remarkable ductility when deformed at elevated temperatures. In addition, when aged below 750 °C the DA IN718 possesses significantly higher UTS compared to those with homogenization treatment. These superior mechanical properties are highly likely due to the non-uniform and hierarchical precipitation consisting of disk-shaped γ″ in diameter from a few to tens of nm in the dendritic core area and micron-sized Laves phase and carbides in the inter-dendritic region.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
